Diabetes Mellitus
Diabetes Mellitus

• Chronic metabolic disease
• One of the most common diseases in North America
 – Affects 5% of USA population (12 million people)
• Results in
 – ↓ insulin secretion by the Beta (β) cells of the islets of Langerhans in the pancreas, AND/OR
 – Defects in insulin receptors on cell membranes leading to cellular resistance to insulin
• Leads to an ↑ risk for significant cardiovascular, renal and ophthalmic disease
Regulation of Glucose

• **Dietary Intake**
 – **Components of food:**
 • Carbohydrates
 • Fats
 • Proteins
 • Vitamins
 • Minerals
Regulation of Glucose

- The other 3 major food sources for glucose are:
 - carbohydrates
 - proteins
 - fats
- Most sugars in the human diet are complex and must be broken down into simple sugars: glucose, galactose and fructose - before use.
Regulation of Glucose

• **Carbohydrates**
 – Found in sugary, starchy foods
 – Ready source of near-instant energy
 – If not “burned” immediately by body, stored in liver and skeletal muscle as glycogen (short-term energy) or as fat (long-term energy needs)
 – After normal meal, approximately 60% of the glucose is stored in liver as glycogen
Regulation of Glucose

• **Fats**
 – Broken down into fatty acids and glycerol by enzymes
 – Excess fat stored in liver or in fat cells (under the skin)
Regulation of Glucose

• Pancreatic hormones are required to regulate blood glucose level
 – glucagon released by Alpha (α) cells
 – insulin released by Beta Cells (β)
 – somatostatin released by Delta Cells (δ)
Regulation of Glucose

• Alpha (α) cells release glucagon to control blood glucose level
 – When blood glucose levels fall, α cells ↑ the amount of glucagon in the blood
 – The surge of glucagon stimulates liver to release glucose stores by the breakdown of glycogen into glucose (glycogenolysis)
 – Also, glucagon stimulates the liver to produce glucose (gluconeogenesis)
Regulation of Glucose

- Beta Cells (β) release insulin (antagonistic to glucagon) to control blood glucose level
 - Insulin \(\uparrow \) the rate at which various body cells take up glucose \(\Rightarrow \) insulin lowers the blood glucose level
 - Promotes glycogenesis - storage of glycogen in the liver
 - Insulin is rapidly broken down by the liver and must be secreted constantly
Regulation of Glucose

• Delta Cells (∂) produce somatostatin, which inhibits both glucagon and insulin
 – inhibits insulin and glucagon secretion by the pancreas
 – inhibits digestion by inhibiting secretion of digestive enzymes
 – inhibits gastric motility
 – inhibits absorption of glucose in the intestine
Regulation of Glucose

• Breakdown of sugars carried out by enzymes in the GI system
 – As simple sugars, they are absorbed from the GI system into the body

• To be converted into energy, glucose must first be transmitted through the cell membrane
 – Glucose molecule is too large and does not readily diffuse
Regulation of Glucose

• Glucose must pass into the cell by binding to a special carrier protein on the cell’s surface.
 – *Facilitated diffusion* - carrier protein binds with the glucose and carries it into the cell.

• The rate at which glucose can enter the cell is dependent upon insulin levels
 – Insulin serves as the messenger - travels via blood to target tissues
 – Combines with specific insulin receptors on the surface of the cell membrane
Regulation of Glucose

• Body strives to maintain blood glucose between 60 mg/dl and 120 mg/dl.

• Glucose
 – brain is the biggest user of glucose in the body
 – sole energy source for brain
 – brain does not require insulin to utilize glucose
Regulation of Glucose

Glucagon and Insulin are opposites (antagonists) of each other.
Regulation of Glucose

• **Glucagon**
 – Released in response to:
 • Sympathetic stimulation
 • Decreasing blood glucose concentration
 – Acts primarily on liver to increase rate of glycogen breakdown
 – Increasing blood glucose levels have inhibitory effect on glucagon secretion
Regulation of Glucose

• **Insulin**
 – Released in response to:
 • Increasing blood glucose concentration
 • Parasympathetic innervation
 – Acts on cell membranes to increase glucose uptake from blood stream
 – Promotes facilitated diffusion of glucose into cells
Diabetes Mellitus

• 2 Types historically based on age of onset (NOT insulin vs. non-insulin)
 – Type I
 • juvenile onset
 • insulin dependent
 – Type II
 • historically adult onset
 – now some morbidly obese children are developing Type II diabetes
 • non-insulin dependent
 – may progress to insulin dependency
Types of Diabetes Mellitus

- Type I
- Type II
- Secondary
- Gestational
Pathophysiology of Type I Diabetes Mellitus

• Characterized by inadequate or absent production of insulin by pancreas
• Usually presents by age 25
• Strong genetic component
• Autoimmune features
 – body destroys own insulin-producing cells in pancreas
 – may follow severe viral illness or injury
• Requires lifelong treatment with insulin replacement
Pathophysiology of Type II Diabetes Mellitus

• Pancreas continues to produce some insulin however disease results from combination of:
 – **Relative** insulin deficiency
 – Decreased sensitivity of insulin receptors

• Onset usually after age 25 in overweight adults
 – Some morbidly obese children develop Type II diabetes

• Familial component

• Usually controlled with diet, weight loss, oral hypoglycemic agents
 – Insulin may be needed at some point in life
Secondary Diabetes Mellitus

- Pre-existing condition affects pancreas
 - Pancreatitis
 - Trauma
Gestational Diabetes Mellitus

- Occurs during pregnancy
 - Usually resolves after delivery
- Occurs rarely in non-pregnant women on BCPs
- Increased estrogen, progesterone antagonize insulin
Presentation of New Onset Diabetes Mellitus

• 3 Ps
 – Polyuria
 – Polydipsia
 – Polyphagia
• Blurred vision, dizziness, altered mental status
• Rapid weight loss
• Warm dry skin,
• Weakness, Tachycardia, Dehydration
Long Term Treatment of Diabetes Mellitus

• Diet regulation
 – *e.g.* 1400 calorie ADA diet

• Exercise
 – increase patient’s glucose metabolism

• Oral hypoglycemic agents
 – Sulfonylureas

• Insulin
 – Historically produced from pigs (porcine insulin)
 – Currently genetic engineering has lead to human insulin (Humulin)
Long Term Treatment of Diabetes Mellitus

• **Insulin**
 – Available in various forms distinguished on onset and duration of action

 • Onset
 – rapid (Regular, Semilente, Novolin 70/30)
 – intermediate (Novolin N, Lente)
 – slow (Ultralente)

 • Duration
 – short, 5-7 hrs (Regular)
 – intermediate, 18-24 hrs (Semilente, Novolin N, Lente, NPH)
 – long-acting, 24 - 36+ hrs (Novolin 70/30, Ultralente)
Long Term Treatment of Diabetes Mellitus

• **Insulin**
 – Must be given by injection as insulin is protein which would be digested if given orally
 • extremely compliant patients may use an insulin pump which provides a continuous dose
 • current research studying inhaled insulin form
Long Term Treatment of Diabetes Mellitus

• **Oral Hypoglycemic Agents**
 – Stimulate the release of insulin from the pancreas, thus patient must still have intact *beta* cells in the pancreas.
 – **Common agents include:**
 • Glucotrol® (glipizide)
 • Micronase® or Diabeta® (glyburide)
 • Glucophage® (metformin) [Not a sulfonylurea]
Emergencies Associated Blood Glucose Level

• **Hyperglycemia**
 – Diabetic Ketoacidosis (DKA)
 – Hyperglycemic Hyperosmolar Nonketotic Coma (HHNC)

• **Hypoglycemia**
 – “Insulin Shock”
Hyperglycemia

• Defined as blood glucose > 200 mg/dl

• Causes
 – Failure to take *medication* (insulin)
 – Increased *dietary* intake
 – *Stress* (surgery, MI, CVA, trauma)
 – Fever
 – *Infection*
 – *Pregnancy* (gestational diabetes)
Hyperglycemia

- Two hyperglycemic diabetic states may occur
 - Diabetic Ketoacidosis (DKA)
 - Hyperglycemic Hyperosmolar Non-ketotic Coma (HHNC)
Diabetic Ketoacidosis (DKA)

- Occurs in Type I diabetics (insulin dependency)
- Usually associated with blood glucose level in the range of 200 - 600 mg/dl
- No insulin availability results in ketoacidosis
Diabetic Ketoacidosis (DKA)

• Pathophysiology
 – Results from absence of insulin
 • prevents glucose from entering the cells
 • leads to glucose accumulation in the blood
 – Cells become starved for glucose and begin to use other energy sources (primarily fats)
 • Fat metabolism generates fatty acids
 • Further metabolized into ketoacids (ketone bodies)
Diabetic Ketoacidosis (DKA)

• Pathophysiology (cont)
 – Blood sugar rises above renal threshold for reabsorption (blood glucose > 180 mg/dl)
 • glucose “spills” into the urine
 • Loss of glucose in urine causes osmotic diuresis
 – Results in
 • dehydration
 • acidosis
 • electrolyte imbalances (especially K+)
Diabetic Ketoacidosis (DKA)

- **Presentation**
 - Gradual onset with progression
 - Warm, pink, dry skin
 - Dry mucous membranes (dehydrated)
 - Tachycardia, weak peripheral pulses
 - Weight loss
 - Polyuria (frequent urination)
 - Polydipsia (excessive thirst)
 - Abdominal pain with nausea/vomiting
 - Altered mental status
 - Kussmaul respirations with acetone (fruity) odor
Diabetic Ketoacidosis

- Inadequate insulin
 - Increased Blood Sugar
 - Osmotic Diuresis
 - Polyuria
 - Volume Depletion
 - Shock
 - Polydipsia
 - Cells Can’t Burn Glucose
 - Polyphagia
 - Ketone Bodies
 - Metabolic Acidosis
 - Fruity Breath
 - Cells Burn Fat
 - Kussmaul Breathing
Management of DKA

- Airway/Ventilation/Oxygen NRB mask
- Assess blood glucose level & ECG
- IV access, large bore NS
 - normal saline bolus and reassess
 - often requires several liters
- Assess for underlying cause of DKA
- Transport

How does fluid treat DKA?
Hyperosmolar Hyperglycemic Nonketotic Coma (HHNC)

- Usually occurs in type II diabetics
- Typically very high blood sugar (>600mg/dl)
- Some insulin available
- Higher mortality than DKA
Hyperosmolar Hyperglycemic Nonketotic Coma (HHNC)

• Pathophysiology
 – Some minimal insulin production
 • enough insulin available to allow glucose to enter the cells and prevent ketogenesis
 • not enough to decrease gluconeogenesis by liver
 • no ketosis
 – Extreme hyperglycemia produces hyperosmolar state causing
 • diuresis
 • severe dehydration
 • electrolyte disturbances
Hyperosmolar Hyperglycemic Nonketotic Coma (HHNC)

- Inadequate insulin
- Increased Blood Sugar
- Osmotic Diuresis
- Polyuria
- Volume Depletion Shock
- Polydipsia
Hyperosmolar Hyperglycemic Nonketotic Coma (HHNC)

• Presentation
 – Same as DKA but with greater severity
 • Higher blood glucose level
 • Non-insulin dependent diabetes
 • Greater degree of dehydration
Management of HHNC

• Secure airway and assess ventilation
 – Consider need to assist ventilation
 – Consider need to intubate
• High concentration oxygen
• Assess blood glucose level & ECG
• IV access, large bore NS
 – normal saline bolus and reassess
 – often requires several liters
• Assess for underlying cause of HHNC
• Transport
Further Management of Hyperglycemia

• Insulin (regular)
 – Correct hyperglycemia

• Correction of acid/base imbalances
 – Bicarbonate (severe cases documented by ABG)

• Normalization of electrolyte balance
 – DKA may result in hyperkalemia 2° to acidosis
 • H⁺ shifts intracellularly, K⁺ moves to extracellular space
 – Urinary K⁺ losses may lead to hypokalemia once therapy is started
Hypoglycemia

• True hypoglycemia defined as blood sugar < 60 mg/dl

• ALL hypoglycemia is NOT caused by diabetes
 – Can occur in non-diabetic patients
 • thin young females
 • alcoholics with liver disease
 • alcohol consumption on empty stomach will block glucose synthesis in liver (gluconeogenesis)

• Hypoglycemia causes impaired functioning of brain which relies on constant supply of glucose
Hypoglycemia

• **Causes** of hypoglycemia in diabetics
 – Too much insulin
 – Too much oral hypoglycemic agent
 • Long half-life requires hospitalization
 – Decreased dietary intake (took insulin and missed meal)
 – Vigorous physical activity

• **Pathophysiology**
 – Inadequate blood glucose available to brain and other cells resulting from one of the above causes
Hypoglycemia

• Presentation
 – Hunger (initially), Headache
 – Weakness, Incoordination (*mimics a stroke*)
 – Confusion, Unusual behavior
 • may appear intoxicated
 – Seizures
 – Coma
 – Weak, rapid pulse
 – Cold, clammy skin
 – Nervousness, trembling, irritability
Hypoglycemia: Pathophysiology

Blood Glucose Falls

Brain Lacks Glucose
- Altered LOC
- Seizures
- Headache
- Dizziness
- Bizarre Behavior
- Weakness

SNS Response
- Anxiety
- Pallor
- Tachycardia
- Diaphoresis
- Nausea
- Dilated Pupils
Hypoglycemia

Beta Blockers may mask symptoms by inhibiting sympathetic response
Management of Hypoglycemia

- Secure airway manually
 - suction prn
 - Ventilate prn
- High concentration oxygen
- Vascular access
 - Large bore IV catheter
 - Saline lock, D$_5$W or NS
 - Large proximal vein preferred
- Assess blood glucose level
Management of Hypoglycemia

- **Oral glucose**
 - ONLY if intact gag reflex, awake & able to sit up
 - 15gm-30gm of packaged glucose, or
 - May use sugar-containing drink or food
 - Oral route often slower

- **Intravenous glucose**
 - Adult: Dextrose 50% (D_{50}) 25gms IV in patent, free-flowing vein, may repeat
 - Children: Dextrose 25% (D_{25}) @ 2 - 4 cc/kg (0.5 - 1 gm/kg)
 [Infants - may choose Dextrose 10% @ 0.5 - 1 gm/kg or 5 - 10 cc/kg]
Management of Hypoglycemia

• Glucagon
 – Used if unable to obtain IV access
 – 1 mg IM
 – Requires glycogen stores
 – Slower onset of action than IV route

What persons are likely to have inadequate glycogen stores?
Management of Hypoglycemia

• Have patient eat high-carbohydrate meal
• Transport?
 – Patient Refusal
 • Leave only with responsible family/friend for 6 hours
 • Must educate family/friend to hypoglycemic signs/symptoms
 • Advise to contact personal physician
 – Transport
 • Hypoglycemic patients on oral agents (long half life)
 • Unknown, atypical or untreated cause of hypoglycemia
Long-term Complications of Diabetes Mellitus

- **Blindness**
 - Retinal hemorrhages

- **Renal Disease**

- **Peripheral Neuropathy**
 - Numbness in “stocking glove” distribution (hands and feet)

- **Heart Disease and Stroke**
 - Chronic state of Hyperglycemia leads to early atherosclerosis

- **Complications in Pregnancy**
Long-term Complications of Diabetes Mellitus

- Diffuse Atherosclerosis
 - AMI
 - CVA
 - PVD
 - Hypertension
 - Renal failure
 - Diabetic retinopathy/blindness
 - Gangrene
Long-term Complications of Diabetes Mellitus

Diabetics are up to 4 times more likely to have heart disease and up to 6 times more likely to have a stroke than a non-diabetic.

10% of all diabetics develop renal disease usually resulting in dialysis.
Long-term Complications of Diabetes Mellitus

- **Peripheral Neuropathy**
 - **Silent MI**
 - Vague, poorly-defined symptom complex
 - Weakness
 - Dizziness
 - Malaise
 - Confusion
 - Suspect MI in any diabetic with MI signs/symptoms with or without CP
Diabetes in Pregnancy

• Early pregnancy (<24 weeks)
 – Rapid embryo growth
 – Decrease in maternal blood glucose
 – Episodes of hypoglycemia
Diabetes in Pregnancy

• Late pregnancy (>24 weeks)
 – Increased resistance to insulin effects
 – Increased blood glucose
 – Ketoacidosis
Diabetes in Pregnancy

• Increased maternal risk for:
 – Pregnancy-induced hypertension
 – Infections
 • Vaginal
 • Urinary tract
Diabetes in Pregnancy

• Increased fetal risk for:
 – High birth weight
 – Hypoglycemia
 – Liver dysfunction-hyperbilirubinemia
 – Hypocalcemia
Assessment of the Diabetic Patient

• Maintain high-degree of suspicion
• Assess blood glucose level in all patients with
 – seizure, neurologic S/S, altered mental status
 – vague history or chief complaint
• Blood glucose assessment IS NOT necessary in all patients with diabetes mellitus!!
Assessment of the Diabetic Patient

• History and Physical Exam includes
 – Look for insulin syringes, medical alert tag, glucometer, or insulin (usually kept in refrigerator)
 – Last meal and last insulin dose
 – Missed med or missed meal?
 – Signs of infection
 • Foot cellulitis / ulcers
 – Recent illness or physiologic stressors
Blood Glucose Assessment

• Capillary vs. venous blood sample
 – Depends on glucometer model
 – Usually capillary preferred

• Dextrostick vs Glucometer
 – Dextrostick - colorimetric assessment of blood provides glucose estimate
 – Glucometer - quantitative glucose measurement

• Neonatal blood
 – Many glucometers are not accurate for neonates
This Concludes Diabetes Mellitus

Please visit the link below to take the EXAM

If you have any questions please contact:
Steven Jones

steven.jones@clemc.us

or

Cell: 623-687-6063