Head & Brain Trauma

- ~ 4 million head injuries in US per year
- ~ 450,000 require hospitalization
 - Most are minor injuries
 - Major head injury most common cause of trauma deaths in trauma centers (>50%)
Head & Brain Trauma

Risk Groups
- Highest: Males 15-24 yrs of age
- Very young children: 6 mos to 2 yrs of age
- Young school age children
- Elderly
Skull Anatomy Review

- Cranium
 - Frontal, occipital, temporal, parietal, mastoid, facial bones
Skull Anatomy Review

- **Middle meningeal artery**
 - lies under temporal bone
 - common source of epidural hematoma
Skull Anatomy Review

- **Foramen Magnum**
 - The large hole at the base of the skull which allows passage of the spinal cord
 - “Foramen Magnum” literally means a "large hole or opening" in Latin
 - With increased ICP the brain stem can be “pushed” through this opening with fatal consequences
Brain Anatomy Review

- Occupies 80% of intracranial space
- Divisions
 - Cerebrum
 - Cerebellum
 - Brain Stem
Brain Anatomy Review

- **Cerebrum**
 - **Cortex**
 - Voluntary skeletal movement
 - Level of awareness
 - **Frontal lobe**
 - Personality
 - **Parietal lobe**
 - Somatic sensory input
 - Memory
 - Emotions
Brain Anatomy Review

- **Cerebrum**
 - **Temporal lobe**
 - speech center
 - long term memory
 - taste
 - smell
 - **Occipital lobe**
 - origin of optic nerve
Brain Anatomy Review

- Cerebrum
 - Hypothalamus
 - center for vomiting, regulation of body temp and water
 - sleep-cycle control
 - appetite
 - Thalamus
 - emotions and alerting or arousal mechanisms
- Cerebellum
 - coordination of voluntary muscle movement
 - equilibrium and posture
Brain Anatomy Review

- Brain Stem
 - connects hemispheres and cerebellum
 - responsible for vegetative functions
 - midbrain
 - relay point for visual and auditory impulses
 - pons
 - conduction pathway between brain and other regions of body
 - medulla oblongata
 - cardiac, respiratory, and vasomotor control centers
 - control of vomiting and coughing
Brain Anatomy Review

- Brain Stem
 - Cranial Nerves
 - Reticular Activating System
 - level of arousal (level of consciousness)
 - Primary control along with cerebral cortex
 - Meninges
 - dura mater: tough outer layer, separates cerebellum from cerebral structures, landmark for lesions
 - arachnoid: web-like, venous vessels that reabsorb CSF
 - pia mater: directly attached to brain tissue
Brain Anatomy Review

- Brain Stem
 - Cerebral Spinal Fluid (CSF)
 - clear, colorless
 - circulates through brain and spinal cord
 - cushions and protects
 - ventricles
 - center of brain
 - secrete CSF by filtering blood
 - forms blood-brain barrier
Brain Metabolism & Perfusion

- **High metabolic rate**
 - consumes 20% of body’s oxygen
 - largest user of glucose
 - requires thiamine
 - does not require insulin
 - cannot store nutrients

- **Blood Supply**
 - **vertebral arteries**
 - supply posterior brain (cerebellum and brain stem)
 - **carotid arteries**
 - most of cerebrum
Brain Metabolism & Perfusion

● Perfusion
 ● Cerebral Blood Flow (CBF)
 – dependent upon CPP
 – flow requires pressure gradient
 ● Cerebral Perfusion Pressure (CPP)
 – pressure moving the blood through the cranium
 – auto-regulation allows BP change to maintain CPP
 – CPP = Mean Arterial Pressure (MAP) - Intracranial Pressure (ICP)
Brain Metabolism & Perfusion

- **Perfusion**
 - **Mean Arterial Pressure (MAP)**
 - largely dependent on cerebral vascular resistance (CVR) since diastolic is main component
 - blood volume and myocardial contractility
 - MAP = Diastolic + 1/3 Pulse Pressure
 - usually require MAP of at least 60 mm Hg to perfuse brain
 - **Intracranial Pressure (ICP)**
 - edema, hemorrhage
 - ICP usually 10-15 mm Hg
Cerebral Blood Flow

- Internal carotid artery
- Middle cerebral artery
- Circle of Willis
- Basilar artery

Bottom view of brain
Mechanisms of Injury

- Motor Vehicle Crashes
 - most common cause of head trauma
 - most common cause of subdural hematoma

- Sports Injuries

- Falls
 - common in elderly and in presence of alcohol
 - associated with subdural hematomas

- Penetrating Trauma
 - missiles more common than sharp projectiles
Categories of Injury

- **Coup injury**
 - directly posterior to point of impact
 - more common when front of head struck

- **Contrecoup injury**
 - directly opposite the point of impact
 - more common when back of head struck

- **Diffuse Axonal Injury (DAI)**
 - shearing, tearing or stretching of nerve fibers
 - more common with vehicle occupant and pedestrian

- **Focal Injury**
 - limited and identifiable site of injury
Head Injury

- Broad and Inclusive Term
 - Traumatic insult to the head that may result in injury to soft tissue, bony structures, and/or brain injury
 - Blunt Trauma
 - more common
 - dura intact
 - fractures, focal brain injury, DAI
 - Penetrating Trauma
 - less common (GSW most common)
 - dura and cranial contents penetrated
 - fractures, focal brain injury
Brain Injury

- “a traumatic insult to the brain capable of producing physical, intellectual, emotional, social and vocational changes”

- Three broad categories
 - **Focal injury**
 - cerebral contusion
 - intracranial hemorrhage
 - epidural hemorrhage
 - **Subarachnoid hemorrhage**
 - **Diffuse Axonal Injury**
 - concussion (mild and classic form)
Causes of Brain Injury

- Direct (Primary) Causes
 - Impact
 - Mechanical disruption of cells
 - Vascular permeability or disruption

- Indirect (Secondary or Tertiary) Causes
 - Secondary
 - edema, hemorrhage, infection, inadequate perfusion, tissue hypoxia, pressure
 - Tertiary
 - apnea, hypotension, pulmonary resistance, ECG changes
Pathophysiology of Brain Injury

- As ICP \(\uparrow \) and approaches MAP, cerebral blood flow \(\downarrow \)
 - Results in \(\downarrow \) CPP
 - Compensatory mechanisms attempt to \(\uparrow \) MAP
 - As CPP \(\downarrow \), cerebral vasodilation occurs to \(\uparrow \) blood volume
 - This leads to further \(\uparrow \) ICP, \(\downarrow \) CPP and so on
Pathophysiology of Brain Injury

- Hypercarbia causes cerebral vasodilation
 - Results in ↑ blood volume ⇒ ↑ ICP ⇒ CPP
 - Compensatory mechanisms attempt to ↑ MAP
 - As CPP ↓, cerebral vasodilation occurs to ↑ blood volume
 - And, the cycle continues

- Hypotension results in ↓ CPP ⇒ cerebral vasodilation
 - Results in ↑ blood volume ⇒ ↑ ICP ⇒ CPP
 - And, the cycle continues
Pathophysiology of Brain Injury

- Pressure exerted downward on Brain
 - cerebral cortex or RAS
 - altered level of consciousness
 - hypothalamus
 - vomiting
 - brain stem
 - ↑ BP and bradycardia 2° vagal stimulation
 - irregular respirations or tachypnea
 - unequal/unreactive pupils 2° oculomotor nerve paralysis
 - posturing
 - seizures dependent on location of injury
 - Herniation
Pathophysiology of Brain Injury

- Levels of Increasing ICP
 - Cerebral cortex and upper brain stem
 - BP rising and pulse rate slowing
 - Pupils reactive
 - Cheyne-Stokes respirations
 - Initially try to localize and remove painful stimuli
 - Middle brain stem
 - Wide pulse pressure and bradycardia
 - Pupils nonreactive or sluggish
 - Central neurogenic hyperventilation
 - Extension
Pathophysiology of Brain Injury

- Levels of Increasing ICP
 - Lower Brain Stem / Medulla
 - Pupil blown (side of injury)
 - Ataxic or absent respirations
 - Flaccid
 - Irregular or changing pulse rate
 - Decreased BP
 - Usually not survivable
Pathophysiology of Brain Injury

- Herniation
 - transtentorial herniation
 - downward displacement of the brain
 - uncal herniation
 - “downward displacement through the tentorial notch by a supratentorial mass exerting pressure on underlying structures including the brain stem”
Head Injuries

- Scalp Laceration/Avulsion
 - Most common injury
 - Vascularity = diffuse bleeding
 - Generally does not cause hypovolemia in adults
 - Can produce hypovolemia in children
Head Injuries

Depressed

Linear

Stellate

Basilar

Skull Fractures
Head Injuries

- **Linear Fracture**
 - Usually **NOT** identified in field
 - 80% of all skull fractures
 - **Suspect based on**
 - Mechanism of injury
 - Overlying soft tissue trauma
 - Usually **NOT** emergency
 - Temporal region = ~Epidural hematoma
Head Injuries

- Depressed Skull Fracture
 - Segment pushed inward
 - Pressure on brain causes brain injury
 - Neurologic signs and symptoms evident
Head Injuries

- **Basilar Skull Fracture**
 - Difficult to detect on x-ray
 - Signs & Symptoms depend on amount of damage
 - Diagnosis made clinically by finding:
 - CSF Otorrhea (CFS from the ears)
 - CSF Rhinorrhea (CFS from the nose)
 - Periorbital ecchymosis
 - Battle’s sign
Head Injuries

- Cerebrospinal Fluid
 - Blood clotting delayed
 - Halo sign
 - Does not crust on drying
 - Positive to Dextrostick
Head Injuries

- Basilar Skull Fracture
 - Do **NOT** pack ears
 - Let drain
 - Do **NOT** suction fluid
 - Do **NOT** instrument nose
Head Injuries

- Open Skull Fracture
 - Cranial contents exposed
 - Manage like evisceration
 - Protect exposed tissue with moist, clean dressing (if possible)
 - Neurologic signs & Symptoms evident
Brain Injuries

- Intracranial Hematomas
 - Epidural
 - Subdural
 - Intracerebral
Brain Injuries

- **Epidural Hematoma**
 - Blood between skull and dura
 - Usually arterial tear
 - middle meningeal artery
 - Causes increase in intracranial pressure
Brain Injuries

- Epidural Hematoma
 - Unconsciousness followed by lucid interval
 - Rapid deterioration
 - Decreased LOC, headache, nausea, vomiting
 - Hemiparesis, hemiplegia
 - Unequal pupils (dilated on side of clot)
 - Increase BP, decreased pulse, irregular respiratory pattern (Cushing’s Triad)
Brain Injuries

- **Subdural Hematoma**
 - Between dura mater and arachnoid
 - More common
 - Usually venous
 - bridging veins between cortex and dura
 - Causes increased intracranial pressure
Brain Injuries

- **Subdural Hematoma**
 - Slower onset
 - Increased ICP
 - Headache, decreased LOC, unequal pupils
 - Increased BP, decreased pulse
 - Hemiparesis, hemiplegia
Brain Injuries

- Intracerebral Hematoma
 - Usually due to laceration of brain
 - Bleeding into cerebral substance
 - Associated with other injuries
 - DAI
 - Neuro deficits depend on region involved and size
 - repetitive w/frontal lobe
 - Increased ICP
Brain Injuries

- Injury to Cerebrum
 - Laceration
 - Concussion
 - Contusion
Brain Injuries

- Laceration
 - Penetrating wounds
 - GSW
 - Stab
 - Depressed Fracture
 - Severe blunt trauma
 - Sudden acceleration/deceleration
Brain Injuries

- **Concussion**
 - Transient loss of consciousness
 - Retrograde amnesia, confusion
 - Perseveration – Repetitive Questioning
 - Resolves spontaneously without deficit
 - Usually due to blunt head trauma
Head Trauma

- Concussion
 - Post-concussion syndrome
 - Headaches
 - Depression
 - Personality changes
Head Trauma Assessment

The Brain Is Enclosed In A Box
Head Trauma Assessment

Early Detection and Control of Increased ICP is Critical
Cerebral Perfusion Pressure = Mean Arterial Pressure - Intracranial Pressure

CPP = MAP - ICP
Head Trauma Assessment

- LOC = Best Indicator
 - Altered LOC = Intracranial trauma UPO
 - Trauma patient unable to follow commands = 25% chance of intracranial injury needing surgery
Head Trauma Assessment

Describe LOC changes based on response to environment
Head Trauma Assessment

- AVPU Scale
 - A = Alert
 - V = Responds to Verbal stimuli
 - P = Responds to Painful stimuli
 - U = Unresponsive
Head Trauma Assessment

- Glasgow Scale
 - Eye Opening
 - Motor Response
 - Verbal Response
Head Trauma Assessment

- Glasgow Scale-Eye Opening
 - 4 = Spontaneous
 - 3 = To voice
 - 2 = To pain
 - 1 = Absent
Head Trauma Assessment

- **Glasgow Scale-Verbal**
 - 5 = Oriented
 - 4 = Confused
 - 3 = Inappropriate words
 - 2 = Moaning, Incomprehensible
 - 1 = No response
Head Trauma Assessment

- **Glasgow Scale-Motor**
 - 6 = Obeys commands
 - 5 = Localizes pain
 - 4 = Withdraws from pain
 - 3 = Decorticate (Flexion)
 - 2 = Decerebrate (Extension)
 - 1 = Flaccid
Head Trauma Assessment

A. Extension posturing (decerebrate rigidity)

B. Abnormal flexion (decorticate rigidity)
Head Trauma Assessment

- Eyes
 - Window to CNS
 - Pupil size, equality, and response to light
Head Trauma Assessment

- **Eyes**
 - Unequal Pupils + Decreased LOC =
 - Compression of oculomotor nerve
 - Probable mass lesion
 - Unequal Pupils + Alert patient =
 - Direct blow to eye, or
 - Oculomotor nerve injury, or
 - Normal inequality
Respiratory Patterns

- Cheyne Stokes
 - Diffuse injury to cerebral hemispheres
- Central neurological hyperventilation
 - Injury to mid-brain
- Apneustic
 - Injury to pons
Head Trauma Assessment

- **Respiratory Patterns**
 - Ataxic or “Boit” Respirations
 - Injury to Medulla
 - Shallow irregular breathing followed by random deep rapid respirations
Head Trauma Assessment

- **Motor Response**
 - Is patient able to move all extremities?
 - How do they move?
 - Decorticate
 - Decerebrate
 - Hemiparesis or Hemiplegia
 - Paraplegia or Quadraplegia
Head Trauma Assessment

- Motor Response
 - Lateralized/Focal Signs
 - Lateralized or Focal Deficits
 - Altered motor function may be due to fracture/dislocation
Head Trauma Assessment

- Vital Signs
 - Cushing’s Triad
 - Suggests Increased Intracranial Pressure
 - Increased BP
 - Decreased Pulse
 - Irregular respiratory pattern
Head Trauma Assessment

Vital Signs

- Isolated head injury will **NOT** cause hypotension in adult
- Look for another life threatening injury
 - Chest
 - Abdomen
 - Pelvis
 - Multiple long bone fractures
Head Trauma Assessment

Summary

- Most important sign = LOC
- Direction of changes more important than single observations
- Importance lies in continued reassessment compared with initial exam
- Altered LOC in trauma = suspect intracranial injury
Head Trauma Management

- **Airway**
 - **Open**
 - Assume C-spine Trauma
 - Jaw Thrust with C-spine Control
 - **Clear - Suction As Needed**
 - **Maintain**
 - Intubation if No Gag Reflex, or
 - RSI
 - Avoid nasal intubation
Head Trauma Management

- Breathing
 - Oxygenate - 100% O₂
 - Ventilate
 - No ROUTINE Hyperventilation
 - Hyperventilate at 20 to 24 breaths per minute IF:
 - Glasgow less than 8
 - Rapid neurologic deterioration
 - Evidence of herniation
Head Trauma Management

- Hyperventilation-Benefits
 - Decreased PaCO$_2$
 - Vasoconstriction
 - Decreased ICP
Head Trauma Management

- Hyperventilation-Risks
 - Decreased cerebral blood flow
 - Decreased oxygen delivery to tissues
 - Increased edema
Head Trauma Management

- **Circulation**
 - Maintain adequate BP and Perfusion
 - IV of NS TKO if BP normal or elevated
 - If BP decreased
 - NS bolus titrated to BP ~ 90 mm Hg
 - Consider Hetastarch (Hespan)
 - Do not use in pediatrics
 - Monitor EKG - Do **NOT** treat bradycardia beyond ventilatory management
Head Trauma Management

- Spinal motion restriction
- If BP normal or elevated, spine board head elevated 30^0
Head Trauma Management

- Monitor for hyperthermia
 - Vasoconstriction
 - Heat retention
 - Increased cerebral O_2 demand
Head Trauma Management

Drug Therapy Considerations

- **Methylprednisolone (Solu-Medrol)**
 - CorticoSteroid
 - Dosage: 30mg/kg infused over 30 min
 - For use with suspected spinal cord injuries with associated paralysis
 - (Do NOT use with penetrating spinal cord injuries)
 - Limits swelling associated with spinal cord trauma
Head Trauma Management

- Drug Therapy Considerations
 - Diazepam (Valium®)
 - Anticonvulsant
 - Give if patient experiences seizures
 - May mask changes in LOC
 - May depress respirations
 - May worsen hypotension
Head Trauma Management

- Drug Therapy Considerations
 - Glucose
 - Assess blood glucose
 - Administer only if hypoglycemic
 - Consider thiamine in malnourished
Head Trauma Management

- Transport Considerations
 - Trauma Center
 - GCS ≤ 12
 - Evidence of herniation
 - Unconscious
 - Multisystem trauma with head trauma
 - Consider comorbid factors
Head Trauma Management

- Helmet Removal
 - Immediate removal if interferes with priorities
 - access to airway or airway management
 - ventilation
 - cervical spine motion restriction
 - May only need to remove face piece to access airway
 - Consider interference with SMR
- Technique
 - requires adequate assistance
 - training in the procedure
 - padding if shoulder pads left on